【摘要】本文提出的算法实现了对复杂多变环境下目标的稳定识别,通过改进模型训练算法,有效提升了深度学习模型对不同环境条件下的目标检测准确率。同时,本文在网络域适应部分设计了类别平衡多分类判别器算法应对多种环境条件下收集样本难易度不同的问题;在RPN网络分类器及输出分类器中引入Focal Loss算法,解决不同环境条件下目标检测难易度差别较大的问题;数据集制作过程中采用局部标注策略加以辅助。实验结果表明改进后的域适应Faster RCNN算法训练出的模型不仅增强了对复杂环境条件下目标检测的鲁棒性,还明显提升了对目标在不良环境条件下的检测准确率,这给遥感任务图像中复杂地理环境背景下的目标检测方法提供了一种新的思路。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《重庆高教研究》 2015-06-30
《中外医疗》 2015-07-03
《重庆高教研究》 2015-06-26
《南京体育学院学报(社会科学版)》 2015-07-01
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点